A physical quantity of the dimensions of length that can be formed out of $c, G$ and $\frac{e^2}{4\pi \varepsilon _0}$  is $[c$ is velocity of light, $G$ is the universal constant of gravitation and $e$ is charge $] $

  • [NEET 2017]
  • A

    $\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $

  • B

    $\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi \varepsilon_0}}$

  • C

    $\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $

  • D

    ${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $

Similar Questions

A dimensionally consistent relation for the volume $V$ of a liquid of coefficient of viscosity $\eta $ flowing per second through a tube of radius $r$ and length $l$ and having a pressure difference $p$ across its end, is

In terms of potential difference $V$, electric current $I$, permittivity $\varepsilon_0$, permeability $\mu_0$ and speed of light $c$, the dimensionally correct equation$(s)$ is(are)

$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$

  • [IIT 2015]

An expression for a dimensionless quantity $P$ is given by $P=\frac{\alpha}{\beta} \log _{e}\left(\frac{ kt }{\beta x }\right)$; where $\alpha$ and $\beta$ are constants, $x$ is distance ; $k$ is Boltzmann constant and $t$ is the temperature. Then the dimensions of $\alpha$ will be

  • [JEE MAIN 2022]

If ${E}, {L}, {m}$ and ${G}$ denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of ${P}$ in the formula ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ are

  • [JEE MAIN 2021]

If velocity $v$, acceleration $A$ and force $F$ are chosen as fundamental quantities, then the dimensional formula of angular momentum in terms of $v,\,A$ and $F$ would be